Fonction de répartition

EXERCICE 1: - Raisonner - Calculer -

On dispose d'une cible de rayon R découpée en quatre zones délimitées par trois cercles concentriques de rayon $\frac{R}{4}$, $\frac{2R}{4}$ et $\frac{3R}{4}$. Les zones ainsi délimitées sont numérotées de 1 à 4 en partant du centre.

On choisit au hasard un point sur cette cible et on appelle X le numéro de la cible sur laquelle on tombe. On admet (pour l'instant) que la probabilité de tomber sur un disque est proportionnelle à sa surface.

- 1. Déterminer la fonction de répartition de la variable X.
- **2.** En déduire la loi de probabilité de X.

Rappels de variables aléatoires finies

EXERCICE 2: - Calculer -

Soit X une variable aléatoire suivant la loi suivante uniforme sur $\{-1,1\}$.

- 1. Calculer P(|X| = 1) et $P(X^2 3X + 2 = 0)$.
- **2.** Calculer $\mathbb{E}[X]$, V(X) et $\sigma(X)$.
- **3.** On pose $Y = \frac{X+1}{2}$. Déterminer $\mathbb{E}[Y]$ et V(Y).
- 4. Calculer $\mathbb{E}\left[\frac{X}{2+X}\right]$.

EXERCICE 3: – Calculer – Soit X une variable aléatoire réelle suivant la loi uniforme sur [-n, n] $(n \in \mathbb{N})$. Déterminer les moments d'ordre 1, 2 et 3 de X.

EXERCICE 4: – Raisonner – Soient $a \in \mathbb{N} - \{0; 1\}$ et X une variable aléatoire dont la loi est donnée par

$$P(X = k) = ck^{b}(a - k)^{b}, \quad \forall k \in \{1, \dots, a - 1\}$$

où
$$c = \left(\sum_{i=1}^{a-1} i^b (a-i)^b\right)^{-1}$$
.

- 1. Montrer que X ét a X ont même loi.
- **2.** En déduire $\mathbb{E}[X]$.

Exercice 5: - Raisonner - Calculer -

A

On tire simultanément k jetons d'une urne contenant n jetons numérotés de 1 à n $(n \ge p)$. Soit X le plus grand numéro obtenu.

- 1. Déterminer la loi de X.
- Justifier que $\sum_{j=k}^{n} P(X=j) = 1$ et en déduire $\sum_{j=p}^{n} {j \choose p}$ pour tous les entiers p, n.
- **3.** Calculer les moments d'ordre 1 et 2 de X.

EXERCICE 6: - Raisonner - Calculer -

On pose Y une variable aléatoire telle que Y vaut 3,4,5, ou 6.

1. Déterminer sa loi sachant que

$$P(Y < 5) = \frac{1}{3}$$
 $P(Y > 5) = \frac{1}{2}$ $P(Y = 3) = P(Y = 4)$

- 2. Déterminer sa fonction de répartition.
- **3.** Calculer E(Y) et V(Y).

EXERCICE 7: – Calculer – On lance un dé et on note X le numéro obtenu. Déterminer la loi et l'espérance de $Y = (X - 3)^2$ et de $Z = \frac{1}{X}$.

Exercice 8: - Raisonner - Calculer -

*

1. - Raisonner - Soit $n \in \mathbb{N}$ et X une v.a. telle que $X(\Omega) \subset \{0, 1, ..., n\}$. Montrer que

$$E(X) = \sum_{k=1}^{n} P(X \geqslant k).$$

- 2. Un jeu vidéo est constitué de n niveaux successifs. Lorsque le joueur commence un niveau (ce qui suppose qu'il ait réussi les niveaux précédents) la probabilité qu'il le réussisse est $\frac{2}{3}$. Le jeu s'arrête dès que le joueur échoue à un niveau. Soit X la variable aléatoire égale au nombre de niveaux réussis par le joueur.
 - a) Déterminer Supp(X) et calculer, pour tout $k \in \{1, ..., n\}$, $P(X \ge k)$.
 - **b**) En déduire $\mathbb{E}[X]$.

1

EXERCICE 9: Loi hypergéométrique – *Modéliser* –

On se donne une urne avec a boules rouges et b boules vertes. On effectue un tirage de n boules sans remise dans cette urne et on note X le nombre de boules rouges obtenues.

Montrer qu'on a, pour tout $k \in [0, n]$,

$$P(X = k) = \frac{\binom{a}{k} \binom{b}{n-k}}{\binom{a+b}{n}}$$

où on utilise la convention $\binom{j}{i} = 0$ si i > j.

On numérote les boules rouges de 1 à a. On note alors la variable

 $X_i = \begin{cases} 1 & \text{si on a tiré la boule } k \text{ parmi les } n \text{ boules tirées.} \\ 0 & \text{sinon} \end{cases}.$

- a) Justifier que $X = \sum_{i=1}^{a} X_i$. b) Montrer que $\mathbb{E}[X_i]$ existe et que

$$\mathbb{E}[X_i] = n \, \frac{a}{a+b}$$

En déduire que $\mathbb{E}[X]$ existe et que

$$\mathbb{E}[X] = np$$

où p est la proportion de boules rouges initiale dans l'urne.

d) Comparer avec le modèle avec remise.

Exercice 10: - Modéliser -

Soit $n \in \mathbb{N}^*$. On lance n fois une pièce truquée. Celle-ci affiche Pile avec la probabilité p. On appelle k-chaîne une suite de k lancers consécutifs ayant tous donné Pile, cette suite devant être suivie d'un Face ou être la dernière du tirage. Pour tout $k \in \{1, \ldots, n\}$, soit X_k le nombre total de k-chaînes de Piles obtenues au cours des n lancers.

- 1. Déterminer la loi de X_n
- Déterminer la loi de X_{n-1}

Exercice 11: - Modéliser - Mobiliser -

4 coups sont tirés sur une cible lointaine avec une probabilité de réussite par coup de 30%. Chaque joueur doit payer 10 euros pour avoir le droit d'essayer, puis gagne 10 euros par tir réussi. On nomme X le nombre de coups réussis et Y le gain du joueur.

- 1. Quelle est la loi de X?
- Quelle est l'espérance et la variance de Y?
- Quelle est la probabilité de ne pas perdre d'argent?

EXERCICE 12: - Modéliser - Raisonner -

Un restaurant dispose de 80 places. La pratique montre qu'en moyenne, 20% des clients ayant réservé le soir ne viennent pas.

- Combien de réservations le restaurant pourrait-il "raisonnablement" accepter en moyenne avant d'être débordé?
- Déterminer la probabilité (sous forme de somme) de ne pas avoir finalement assez de place en effectuant le raisonnement précédent. (On pourra éventuellement faire le calcul à l'aide de l'outil adapté à calculatrice ou avec Python.)

Variables aléatoires discrètes

EXERCICE 13: – Calculer – Soit $(p_n)_{n\in\mathbb{N}^*}$ une suite définie par

$$p_n = \frac{4}{n(n+1)(n+2)} \quad \forall n \in \mathbb{N}^*.$$

- Montrer qu'il existe une variable aléatoire réelle X telle que $P(X = n) = p_n$ pour tout $n \in \mathbb{N}^*$.
- Calculer l'espérance de X.

EXERCICE 14: – Calculer – Soit $(p_n)_{n\in\mathbb{N}^*}$ une suite définie par

$$p_n = \frac{\alpha}{n(n-1)}$$
 $\forall n \in \Omega = [2; +\infty]$

- Déterminer α de manière à ce qu'il existe une variable X telle que Supp(X) = \mathbb{N}^* et $P(X=n)=p_n$ pour tout $n\in\mathbb{N}^*$.
- Montrer que l'espérance de X n'existe pas.

Exercice 15: - Calculer -

1. Soit $\alpha \in \mathbb{R}$, (Ω, \mathcal{T}, P) un espace probabilisé et X une application définie par

$$P\left(X = \frac{(-1)^n}{n}\right) = \frac{\alpha}{(n-1)!} \quad \forall n \in \mathbb{N}^*.$$

Déterminer α de manière à ce que X soit une variable aléatoire.

Déterminer $\mathbb{E}[X]$ si elle existe.

EXERCICE 16: - Raisonner -

Soit X une variable aléatoire réelle à valeurs dans N vérifiant pour tout $k \in \mathbb{N}$,

$$P(X \geqslant k+1) = \frac{1}{2}P(X \geqslant k).$$

Déterminer la loi de X.

EXERCICE 17: - Modéliser - Calculer - Grand-mère a offert un renne en peluche à sa petite fille pour Noël. Chaque Noël, la probabilité pour que l'enfant s'intéresse à ce jouet dans l'année qui suit est de 0,3, chaque année étant indépendante de la précédente. On appelle X le nombre d'années passant jusqu'à ce que la petite fille se soit intéressée au jouet dans l'année. Déterminer :

- $\mathbb{E}[X]$ et $\sigma(X)$.
- La fonction de répartition de X.
- Le nombre d'années minimum que doit envisager d'attendre la grand-mère pour avoir une probabilité supérieure à 0,8 que son cadeau ait finalement été apprécié à sa juste valeur.

EXERCICE 18: - Modéliser - Mobiliser -

La poissonnerie de la rue des bouchers est en contrebas du trottoir. Pour y accéder, il faut descendre une marche inattendue. La nombre X d'entorses par semaine que se font les chalends suit une loi de Poisson de paramètre 7.

- Quel est le nombre moyen d'entorses par semaine?
- Calculer la probabilité de ne pas avoir d'accident dans la clientèle durant une semaine.
 - On note $\mu = \mathbb{E}[X]$ et σ l'écart type de X. Déterminer la probabilité que le nombre d'entorse soit inclu dans l'intervalle

$$[\mu - \sigma; \mu + \sigma]$$

Voyant baisser son chiffre d'affaire, la poissonière placarde une mise en garde sur la porte. Le nombre Y d'entorses par semaine tombe alors à trois en moyenne.

- 3. a) Les mauvaises semaines sont celles pendant lesquelles il y a plusieurs entorses. Estimer leur proportion sur une année.
 - Les semaines étant ainsi indépendantes les une des autres, estimer le nombre moyen de mauvaises semaines dans le mois. (on compte 4 semaines dans le mois.)

Exercice 19: – Modéliser – Mobiliser – Le Beaujolais nouveau est arrivé. Un amateur éclairé, mais excessif, se déplace de réverbère en réverbère. Quand il se lance pour attraper le suivant, il a 80% de chances de ne pas s'étaler. Pour gagner le bistrot convoité, il faut en franchir 7. On note X le nombre de réverbères atteints sans chute.

- Établir la loi de X et donner son espérance et sa variance.
- Enfin parvenu dans l'ascenseur pour la scène de ménage, il appuie au hasard sur un des huits boutons. Soit Z le nombre de boutons pressés avant d'arriver à son étage, ou de déclencher l'alarme qui fera venir la concierge. Déterminer la loi de Z. Combien d'essais lui faut-il en moyenne avant de voir sa femme ou sa concierge.

Exercice 20: - Calculer - Déterminer la loi, l'espérance et la variance de $Y=(-1)^X$ lorsque X suit une loi de Poisson de paramétre $\lambda>0$.

Calculer - Caractérisation d'une loi de Poisson

Soit X une variable aléatoire à valeurs dans \mathbb{N} , telle que pour tout $n \in \mathbb{N}$ $p_n = P(X = n) > 0$. Montrer que pour tout $\lambda > 0$ les deux propriétés suivantes sont équivalentes :

- 1. X suit la loi de Poisson de paramétre λ .
- 2. pour tout $n \ge 1$ on a, $\frac{p_n}{p_{n-1}} = \frac{\lambda}{n}$.

EXERCICE 22: - Calculer - Soit X une variable aléatoire de loi géométrique $\mathcal{G}(p)$. Calculer $E\left(\frac{1}{Y}\right)$.

EXERCICE 23: - Raisonner - *

Soit X une v.a. discrète telle que $Supp(X) \subset \mathbb{N}$.

1. Montrer que pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} k P(X = k) + n P(X \ge n + 1) = \sum_{k=1}^{n} P(X \ge k)$$

- Montrer que si X admet une espérance alors $\lim_{n\to+\infty} nP(X\geqslant n+1)=0$.
- En déduire que X admet une espérance \iff la série $\sum (P(X \ge k))_{k \in \mathbb{N}}$ converge.
- Montrer que dans ce cas $E(X) = \sum_{k=1}^{+\infty} P(X \ge k)$.

Indications

Exercice 1

On rappelle qu'à toutes fins utiles, la surface d'un disque de rayon r est πr^2 .

Exercice 9

2. On pourra éventuellement calculer si besoin $P(X_i = 0)$ (ne pas obtenir b) la boule k.)

Exercice 13

Il s'agit simplement de vérifier que p est une loi de probabilités...

Pour ceci, déterminer a, b, c tels que $\frac{4}{n(n+1)(n+2)} = \frac{a}{n} + \frac{b}{n+1} + \frac{c}{n+2}$ Déterminer a, b tels que $\frac{4}{(n+1)(n+2)} = \frac{a}{n+1} + \frac{b}{n+2}$

Exercice 20

Le calcul a déjà été fait dans des feuilles précédentes. Se souvenir de la technique.